Unraveling dual feeding associated molecular complexity of salivary glands in the mosquito Anopheles culicifacies
نویسندگان
چکیده
Mosquito salivary glands are well known to facilitate meal acquisition, however the fundamental question on how adult female salivary gland manages molecular responses during sugar versus blood meal uptake remains unanswered. To investigate these responses, we analyzed a total of 58.5 million raw reads generated from two independent RNAseq libraries of the salivary glands collected from 3-4 day-old sugar and blood fed Anopheles culicifacies mosquitoes. Comprehensive functional annotation analysis of 10,931 contigs unraveled that salivary glands may encode diverse nature of proteins in response to distinct physiological feeding status. Digital gene expression analysis and PCR validation indicated that first blood meal significantly alters the molecular architecture of the salivary glands. Comparative microscopic analysis also revealed that first blood meal uptake not only causes an alteration of at least 12-22% of morphological features of the salivary glands but also results in cellular changes e.g. apoptosis, confirming together that adult female salivary glands are specialized organs to manage meal specific responses. Unraveling the underlying mechanism of mosquito salivary gene expression, controlling dual feeding associated responses may provide a new opportunity to control vector borne diseases.
منابع مشابه
Bio012294 1002..1015
Mosquito salivary glands are well known to facilitate meal acquisition, however the fundamental question on howadult female salivary gland manages molecular responses during sugar versus blood meal uptake remains unanswered. To investigate these responses, we analyzed a total of 58.5 million raw reads generated from two independent RNAseq libraries of the salivary glands collected from 3–4 day-...
متن کاملTowards a Proteomic Catalogue and Differential Annotation of Salivary Gland Proteins in Blood Fed Malaria Vector Anopheles culicifacies by Mass Spectrometry
In order to understand the importance of functional proteins in mosquito behavior, following blood meal, a baseline proteomic dataset is essential for providing insights into the physiology of blood feeding. Therefore, in this study as first step, in solution and 1-D electrophoresis digestion approach combined with tandem mass spectrometry (nano LC-MS/MS) and computational bioinformatics for da...
متن کاملSex specific molecular responses of quick-to-court protein in Indian malarial vector Anopheles culicifacies: conflict of mating versus blood feeding behaviour
Understanding the molecular basis of mosquito behavioural complexity plays a central role in designing novel molecular tools to fight against their vector-borne diseases. Although the olfactory system plays an important role in guiding and managing many behavioural responses including feeding and mating, but the sex-specific regulation of olfactory responses remain poorly investigated. From our...
متن کاملExploring the salivary gland transcriptome and proteome of the Anopheles stephensi mosquito.
Anopheles stephensi is the main urban mosquito vector of malaria in the Indian subcontinent, and belongs to the same subgenus as Anopheles gambiae, the main malaria vector in Africa. Recently the genome and proteome sets of An. gambiae have been described, as well as several protein sequences expressed in its salivary glands, some of which had their expression confirmed by amino terminal sequen...
متن کاملPlatelet-activating-factor-hydrolyzing phospholipase C in the salivary glands and saliva of the mosquito Culex quinquefasciatus.
A phospholipase C activity specific for platelet-activating factor (PAF), named PAF phosphorylcholine hydrolase, was found in the salivary glands and saliva of the human-feeding mosquito Culex quinquefasciatus. The enzymatic activity was demonstrated by inhibition of PAF-induced platelet aggregation, and by identification of substrate consumption and production of diacyl glyceride by electrospr...
متن کامل